INSTRUCTOR: Robert Slocum
Office: HS G46
Phone: 410-337-6303
E-mail: bslocum@goucher.edu

CLASS TIME: Fridays, 2:30 PM; HS G39

CELL PHONE POLICY:
If your cell phone rings in class, you will be asked to leave the classroom for the day. If it rings in class a second time, you will be asked to leave the class for the semester. Out of consideration for your classmates and the instructor, please turn your phones off before coming to class.

ACADEMIC HONOR CODE:
All students are bound by the standards of the Academic Honor Code, found at <http://www.goucher.edu/documents/General/AcademicHonorCode.pdf>

COURSE ORGANIZATION
This 1-credit course provides students with the opportunity to explore many contemporary topics in biology in greater depth than is possible in Bio 104. Students meet each week to discuss assigned readings or to make oral presentations on topics which they and their peers have researched. A field trip may also be scheduled during the semester.

For oral presentations, a group of 3 or 4 students will be assigned a topic to research. (Several topics related to subjects addressed in Bio 104 lectures will be suggested by the instructor.) One member of the team, chosen by the team itself, will serve as the "director" of the research, coordinating work carried out by each of the other team members. Each team member will contribute a specific part of the talk. Non-presenting students will question the presenters in class.

Each team will present talks on three separate dates during the semester. The team will write a paper on the same topic as the oral presentation once during the semester (due in class, any of the three dates).
INTERNET RESOURCES

Students may elect to supplement traditional library searches with internet resources. If a significant part of the research is derived from a Web source, the student should cite the URL, and date that site was visited, in a bibliography (paper) or on PowerPoint slides in which the information is presented. Wikipedia citations, specifically, are not acceptable as stand-alone references, as this “open-source” material may be edited by anyone. Most of the resources used in preparation of talks or the paper should be published, peer-reviewed articles or books.

PAPER

While a reasonable level of writing proficiency is expected, a thoughtful discussion of the work that was researched is preferable to a highly-"polished" paper that is simply a review of the literature. Students are encouraged to critically analyze the papers and topics that they read, emphasizing their own interpretations and possible significance of the work. The paper must contain a bibliography comprising a list of complete citations for all references cited in the text.

Papers are due at the beginning of class. Grades on papers turned in late will be penalized a letter grade per working day, unless an extension is granted by the instructor.

ATTENDANCE

Students are expected to attend each class and to participate fully in group meetings and activities.

COURSE GRADING

Grades for this course will be determined as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper</td>
<td>20%</td>
</tr>
<tr>
<td>Oral presentations</td>
<td>60%</td>
</tr>
<tr>
<td>Class participation</td>
<td>20%</td>
</tr>
<tr>
<td>Date</td>
<td>Readings / Assignments</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Sept. 11</td>
<td>Go over Syllabus.</td>
</tr>
<tr>
<td></td>
<td>Assigned readings on "Extremophiles":</td>
</tr>
<tr>
<td>Sept. 18</td>
<td>Discuss extremophile readings.</td>
</tr>
<tr>
<td></td>
<td>Each team chooses from the following research topics (Group 1, first choice of topics, followed by Groups 2 and 3). Some possible topics:</td>
</tr>
<tr>
<td></td>
<td>1) Origin of life: Mechanisms of self-replication of RNA or other macromolecules; evolution of cellular “metabolism”, “Panspermia”, other topics.</td>
</tr>
<tr>
<td></td>
<td>2) Prokaryotes, Archaebacteria: Any topic, except extremophiles.</td>
</tr>
<tr>
<td></td>
<td>3) The endosymbiosis theory for the origin or eukaryotic cells - the "inside" story.</td>
</tr>
<tr>
<td></td>
<td>4) Phylogenetic classification schemes, "Tree of Life" project, etc.</td>
</tr>
<tr>
<td>Sept. 25</td>
<td>Meet with Randy Smith, Research Services Librarian (Athenaeum, Library Classroom Rm 326):</td>
</tr>
<tr>
<td></td>
<td>Searching Wilson General Sciences Abstracts database; use and citation of Internet resources.</td>
</tr>
</tbody>
</table>
Oct. 2

Oral presentations – **Round 1 (Groups 1 and 2)**

Assigned readings on antibiotic resistance, related topics.

Oct. 9 Oral presentations – **Round 1 (Group 3)**

Oct. 16

Discuss antibiotic resistance readings.

Each team chooses from the following research topics (Group 2, first choice of topics, followed by Groups 3 and Group 1). Some possible topics:

1) **Protists**: The biology of malaria and the development of anti-malarial vaccines and therapies; "*Pfisteria hysteria*" - recent developments.

2) **Fungi**: Mycorrhizal associations; insectivorous and nematode-catching fungi; biology and control of plant and human pathogenic fungi; role in nutrient cycling, etc.

Oct. 23

Oral presentations – **Round 2 (Groups 2 and 3)**

Assigned readings on plant biotechnology/biofuels production.

Oct. 30 Oral presentations – **Round 2 (Group 1)**
Nov. 6 Discuss plant biotechnology/biofuels readings.

Each team chooses from the following research topics (Group 3, first choice of topics, followed by Groups 1 and Group 2). Possible topics:

1) **Plants**: Production of pharmaceuticals in genetically-engineered plants; development of insect- or pathogen-resistant crop plants; use of plants in bioremediation of contaminated water and soils.

2) **Sponge biology**: sponge symbioses with zooxanthellae or any other topic.

3) **Insects**: biology of social insects: termites, ants, bees and wasps

4) Physiological adaptations of hydrothermal vent animals (e.g., adaptations for feeding, respiratory adaptations to hydrogen sulfide).

5) Schistosomiasis, or other parasitic worm diseases

Nov. 13 Field trip to the National Aquarium in Baltimore

Nov. 20 Oral presentations - Round 3 (Groups 1, 2 and 3)

Assigned reading:

Nov. 27 No class scheduled (Thanksgiving recess)

Dec. 4 Discuss Watson and Hessinger (1989) reading.

Course evaluations.
Bio 104H Class Schedule (Abbreviated)

Sept 4 No class scheduled
Sept 11 Course introduction, readings assigned
Sept 18 Extremophile readings – discuss in class
Sept 25 Randy Smith, Research Services Librarian (Athenaeum, Rm 326) (Lecture Exam I); instructor in Arizona for meeting
Oct 2 TALKS 1 (Groups 1 and 2); readings assigned
Oct 9 TALKS 1 (Group 3)
Oct 16 Antibiotic resistance readings – discuss in class (Lecture Exam II)
Oct 23 TALKS 2 (Groups 2 and 3); readings assigned
Oct 30 TALKS 2 (Group 1)
Nov 6 Plant biotechnology/biofuels readings – discuss in class
Nov. 13 Field Trip to National Aquarium in Baltimore (Lecture Exam III)
Nov. 20 TALKS 3 (Groups 1, 2 and 3); reading assigned
Nov. 27 Thanksgiving – no class
Dec 4 Watson & Hessinger (1989) reading; course evaluations